Reconsidering the Role of Sleep for Motor Memory

Denise J. Cai and Timothy C. Rickard
University of California, San Diego

Previous studies suggest that sleep may play an important role in memory consolidation of motor skills. It has been difficult, however, to tease apart the effect of sleep from circadian and homeostatic factors. We examined the effect of sleep on a popular motor sequence task, utilizing a design that controlled for time of day and time since sleep between wake and sleep groups. When these factors were controlled, there was no benefit of sleep to motor memory, suggesting that previous work may have been influenced by circadian and homeostatic confounds.

Keywords: motor skill, sleep, consolidation, learning

Sleep has been postulated to play an active role in the consolidation of motor memories (Stickgold, 2005), although not without controversy (for a review, see Siegel, 2005; Vertes, 2004; Vertes & Siegel, 2005). Most studies use a task in which subjects repeatedly tap out an explicit, known sequence. The typical design involves a wake group in which subjects are trained in the morning and tested 12 hr later and a sleep group in which subjects are trained at night and tested 12 hr later. Both groups are trained and tested by interleaving 30-s blocks of tapping followed by 30 s of rest, with 12 blocks of training and 2 blocks during the test. The sleep group typically has faster and more accurate responses on the test than at the end of training, whereas the wake group does not. The reported improved performance after a sleep period (i.e., sleep enhancement) has been taken as evidence for sleep-dependent consolidation, an active replay process that occurs solely during sleep (Walker, 2005).

Rickard, Cai, Rieth, Jones, and Ard (2008), however, argued that the sleep enhancement effect in the explicit sequence task is instead the result of data averaging and perhaps also time-of-day (circadian) and time-since-sleep (homeostatic) confounds. They showed that there are strong reactive inhibition effects (Hull, 1943) that build up during each 30-s block of rest, with 12 blocks of training and 2 blocks during the test. The effect is pronounced at the end of 12 blocks of training, perhaps because of a gradual build-up of fatigue over the training session. When those reactive inhibition effects are reduced by either limiting analysis to the first few sequences of each block or by experimentally reducing the build-up of fatigue during training, the sleep enhancement effect was eliminated.

However, the sleep group still performed better than the wake group at test. Rickard et al. (2008) advanced two candidate ac-...
for time of day, this does not allow for comparison between wake and sleep groups.

Given that there appears to be no ideal design for comparing waking and sleeping groups, it is prudent to use a variety of approaches with different strengths and weaknesses. A successful theory of sleep consolidation must then account for the results from all of the different approaches. The present study was conducted in this spirit. We used a new design that controls for circadian and homeostatic factors at the cost of possible time duration effects.

Method

Subjects

A total of 79 undergraduate students participated for course credit. All subjects were right-handed. Nineteen subjects reported practicing between sessions, 7 additional subjects reported napping between sessions, and 10 additional subjects reported not getting at least 6 hr of sleep the previous night. All of these subjects were eliminated from the primary data analyses described later, leaving data from 43 subjects.

There were three groups: a wake (n = 15) group, a 1-night (n = 17) group, and a 2-night (n = 11) group. All groups were trained within an hour and half of 9:30 a.m. The wake group returned for testing at 5:30 p.m. of Day 1 (8-hr delay). The 1-night group was tested at 5:30 p.m. of Day 2 (32-hr delay) after a night of sleep posttraining. The 2-night group was tested at 5:30 p.m. of Day 3 (56-hr delay) after 2 nights of sleep posttraining. Hence, whereas the time of training and testing was the same among the groups, eliminating circadian and homeostatic effects between groups, the delay interval differed.

It is important to note that there is no a priori reason to believe that our approach of controlling for circadian and homeostatic factors at the cost of differing delay intervals is more problematic than the usual design that controls for delay interval at the cost of circadian and homeostatic differences. The main potential problem of allowing delay duration to differ between groups is that forgetting (i.e., worsening of task performance at test) may increase with a longer delay, an effect that would tend to mask any enhancement effect for the sleep groups. However, work to date clearly indicates no improvement for the wake, 1-night, and 2-night groups, respectively.

To ensure that we had enough power to detect the sleep enhancement effect, we performed a retrospective analysis of the statistical power. We first combined the 1-night and 2-night groups into a single group, yielding two groups—a wake group and a sleep group—and framing these two sets of difference scores in the form of a t test for two independent samples. For the 43 subjects, power to detect an effect in which there is no improvement between sessions for the wake group but a 20% speedup between sessions for the sleep group (approximately the effect size observed in the literature) is greater than .98. The power to detect 10% speedup is .79.

To explore whether sleep enhances rate of speedup in the test session, we compared RTs for the last four blocks of the training session to the last four blocks of the test session. There was again no effect across groups in an ANOVA of the difference scores.
indicating that posttraining sleep does not increase the rate of performance at test. However, the difference scores within each group were significantly greater than zero, \( t(42) = 7.12, p < .001 \), confirming the expected learning due to practice during the testing session.

**Discussion**

In this study, the first one to control for circadian and homeostatic factors when comparing wake and sleep groups, we found that posttraining sleep does not enhance motor sequence performance. It is possible that the lack of a sleep effect in this study was due to relatively minor procedural differences between our version of the motor sequence task and the task used by Walker et al. (2002). Most significantly, we defined a block in terms of the number of required key press sequences rather than by time duration. There is no theoretical reason, however, to expect this procedural difference to be pertinent. If it is an important factor underlying the sleep effect, then this finding alone should reduce our confidence in the notion that sleep plays a significant role in consolidating motor memory.

In our view, the more plausible account for the lack of sleep enhancement is our novel design, in which we control for circadian and homeostatic factors. This result is consistent with the observations of Rickard et al. (2008), suggesting circadian and perhaps homeostatic differences between morning and evening motor performance. Keisler, Ashe, and Willingham (2007) have also replicated the apparent sleep enhancement in an implicit motor sequence task but demonstrated that time of day, and not sleep, accounted for the enhancement.

The reader may question why the Walker et al. studies (Walker, Brakefield, Hobson, & Stickgold, 2003; Walker, Breakfield, Seidman, et al., 2003) demonstrate a 20–30% improvement after a 24-,
42-, and 72-hr delay, whereas we observe no difference after a 32- or 56-hr delay while using roughly the same amount of data averaging that they did. One possibility is that the Walker et al. studies (Walker, Brakefield, Hobson, & Stickgold, 2003; Walker, Brakefield, Seidman, et al., 2003) train and test subjects at the same time of day, whereas subjects in the present design trained in the morning and tested in the early evening. Although Walker et al. (2002) did not find differences between morning and evening performance, other studies suggest that the morning is better than later afternoon (Payne, 1989; Wright, Hull, & Czeisler, 2002) or evening (Keisler et al., 2007; Rickard et al., 2008) for motor performance. If there is sleep consolidation and a circadian influence on motor sequence performance, we expect that our sleep groups would have a smaller effects size as compared with Walker, Brakefield, Hobson, and Stickgold (2003), as was observed, but that we would still observe a difference between the wake and sleep groups. Our results therefore are consistent with circadian influences on performance in the absence of a sleep consolidation effect.

The literature is also inconsistent with respect to which sleep components contribute to motor memory consolidation. Stage II (Nishida & Walker, 2007; Walker et al., 2002) and rapid eye movement (REM) have been found to correlate with motor sequence performance. Spindle density during Stage 2 and slow-wave sleep (SWS) have also been reported to correlate with motor sequence performance (Nishida & Walker, 2007; Rasch, Pomer, Diekelmann, & Born, 2008). Furthermore, studies using other motor tasks have found SWS (Huber, Ghilardi, Massimini, & Tononi, 2004) or REM sleep (Plihal & Born, 1997) to be associated with performance. To date, it is unclear as to what sleep components are associated with motor memory consolidation.

Our goal in this study was to advance a new method for exploring behavioral sleep consolidation effects that, when considered in combination with other methods in the literature, can yield new insights. Any successful theory of sleep consolidation must ultimately explain this full set of results. At present, four general accounts seem viable. First, it may simply be the case that sleep plays no role in motor sequence memory and that previous findings suggesting otherwise were driven by circadian and homeostatic factors or by data averaging and reactive inhibition effects as discussed in Rickard et al. (2008). By this account, the test advantage for the sleep group in the Fischer et al. (2002, Fischer et al., 2005) deprivation studies would be interpreted as reflecting impairment of a purely time-based consolidation process in the sleep-deprived group.

A second intriguing account of the broad pattern of results over various studies is that sleep only benefits consolidation of motor memory if training occurs within a critical time window before sleep, as suggested by some rodent studies (Smith, 1985). The morning training of our subjects may have been outside of that time window.

Third, sleep might play a permissive role of retroactive facilitation (Ellenbogen, Payne, & Stickgold, 2006), which protects memories from being forgotten by reduction of retroactive interference, similar to the effect of benzodiazepines (Wixted, 2004). It has also been demonstrated that sleep may stabilize motor memory, making it more resistant to interference (Korman et al., 2007). According to this theory, there may have been forgetting across the wake period that followed training in the wake and sleep groups of the present design. The sleep period may then have stabilized the memory from further deterioration, resulting in the lack of difference between the wake and sleep groups.

Our findings should not be taken to mean that sleep does not play any role in the consolidation of motor memories. However, the present results, in combination with recent work (Keisler et al., 2007; Rickard et al., 2008; Song, Howard, & Howard, 2007), do call into question previous evidence of sleep-dependent enhancement of motor performance. To the extent that circadian, homeostatic, data averaging, and reactive inhibition influences have not been adequately controlled, we cannot be sure that a relative sleep advantage reflects an active consolidation process unique to sleep. Future research can benefit from use of multiple approaches to tease apart the interaction of sleep, circadian effects, and memory.

References


Received January 12, 2009
Revision received September 1, 2009
Accepted September 3, 2009

Call for Nominations


Candidates should be members of APA and should be available to start receiving manuscripts in early 2011 to prepare for issues published in 2012. Please note that the P&C Board encourages participation by members of underrepresented groups in the publication process and would particularly welcome such nominees. Self-nominations are also encouraged.

Search chairs have been appointed as follows:

- Experimental and Clinical Psychopharmacology, William Howell, PhD
- Journal of Abnormal Psychology, Norman Abeles, PhD
- Journal of Comparative Psychology, John Disterhoft, PhD
- Journal of Counseling Psychology, Neil Schmitt, PhD
- Journal of Experimental Psychology: General, Peter Ornstein, PhD
- Journal of Experimental Psychology: Human Perception and Performance, Leah Light, PhD
- Journal of Personality and Social Psychology: Attitudes and Social Cognition, Jennifer Crocker, PhD
- PsyCRITIQUES, Valerie Reyna, PhD
- Rehabilitation Psychology, Bob Frank, PhD

Candidates should be nominated by accessing APA’s EditorQuest site on the Web. Using your Web browser, go to http://editorquest.apa.org. On the Home menu on the left, find “Guests.” Next, click on the link “Submit a Nomination,” enter your nominee’s information, and click “Submit.” Prepared statements of one page or less in support of a nominee can also be submitted by e-mail to Emnet Tesfaye, P&C Board Search Liaison, at emnet@apa.org.

Deadline for accepting nominations is January 10, 2010, when reviews will begin.