Research

Research in our laboratory focuses on dementia (Alzheimer’s disease & frontotemporal dementia) and addiction (alcohol use disorder (AUD)). In each of these projects our goal is to understand the molecular basis of disease in order to identify novel targets for therapeutic development. 
 
Alzheimer’s disease (AD): We use genetic and genomic approaches to identify susceptibility alleles, this work includes genome wide association studies (GWAS) and whole genome/exome sequencing in families multiply affected by disease and in case control cohorts. Since 2013 and the discovery of TREM2 as an AD risk factor (Guerreiro et al., 2013: PMID 2315094) we have focused on the role of myeloid cells in the genetics of AD. Using an integrative genomic approach we have identified a network of AD risk genes regulated by SPI1 another AD risk gene (Huang et al., 2017: PMID: 28628103) and demonstrated that these gene are enriched in microglial pathways connected to efferocytosis (the uptake and clearance of lipid rich debris) (Novikova et al., 2021:PMID: 33712570). We are using similar approaches to identify other gene regulatory networks important in regulating microglial transcriptional states. To validate these genetic findings we are using primary microglia and induced pluripotent stem cells (iPSCs) to model the effects of disease-associated variants in disease relevant cell types. We currently have ongoing projects to study SPI1 (Pimenova et al., 2021:PMID: 33301878); APOE (Machlovi et al., 2022: PMID: 35031484; TCW et al., Cell in press: biorxivMS4A4A/MS4A6A and EED. To complement these in vitro studies we are using a xenotransplantation model to introduce human induced microglia into the mouse brain as well as studies to knock-down or increase expression of the cognate mouse genes in collaboration with Dr. Anne Schaefer. Finally, we are using this genetic knowledge to identify novel pathways and targets for the development of therapeutics for AD. We have ongoing projects to develop therapeutics mimicking knock-down of SPI1 and MS4A4A/MS4A6A.

Frontotemporal Dementia (FTD): We use stem cell and genomic approaches to study autosomal dominant causes of tauopathy such as mutations within the MAPT gene. Using crispr genome editing and differentiation of isogenic lines into forebrain organoids we have developed a system that shows age dependent neurodegeneration and recapitulates the selective neuronal vulnerability seen in people with FTD (Bowles et al., 2021:PMID: 34314701).  Single cell and bulk RNAseq have identified key pathways that become progressively dysregulated as the organoids age. A second project focused on tauopathies uses an integrative genomics approach to understand the differential risks for sporadic tauopathies associated with the H1/H2 haplotypes. These haplotypes differ from one another by a 1Mb inversion of chromosome 17q21.31. We are using brain tissue and iPSC cultures to determine how this inversion influences chromatin structure and gene expression/regulation to understand how these differences lead to changes in disease risk.
 
Alcoholism: Interestingly, our GWAS in alcoholism have identified shared genetic risk with neurodegenerative disease including SPI1 and the MAPT locus (Kapoor et al., 2021: PMID: 34417470). Our functional analyses are aimed at validating these and other genes identified in the genetic studies. One ongoing collaboration with the Slesinger lab seeks to understand how the potassium channel GIRK2, encoded by KCNJ6 influences alcoholism risk using iPSC-derived neurons. 

Contact us

Goate Laboratory
Alison M Goate, DPhil
Jean C. & James W. Crystal Professor and Chair
Director, Ronald M. Loeb Center for Alzheimer’s disease
Dept. of Genetics & Genomic Sciences,
Icahn Genomics Institute
Icahn School of Medicine at Mount Sinai

Location
Lab: ICAHN 10-52
Office: ICAHN 10-70C
Phone
Office: 212-659-5672
Email:alison.goate@mssm.edu

Current Projects

Identification and Characterization of AD Risk Networks using Multi-Dimensional “omics” Data

Genome-wide association, whole genome/exome sequencing and gene network studies have already enabled researchers to identify twenty loci influencing Alzheimer’s disease (AD) risk and another half dozen genes carrying specific rare variants that influence disease risk. With the new whole-genome sequence (WGS) and whole-exome sequence (WES) data from 10,000+ AD cases and controls from the ADSP, combined with mRNA expression data from 3,500+ individuals from AMP, it is now possible to develop a more comprehensive picture of the genetic architecture of AD and associated risk. Our goal is to identify and validate therapeutic targets for AD by identifying genes that functionally drive or protect from AD and interrogating their respective gene networks for therapeutic targets. Genetic and pathway-based analyses have strongly implicated a small number of networks including immune response, phagocytosis, lipid metabolism and endocytosis. We will integrate data from genetic studies and gene expression/regulation studies to identify risk and resilience genes to pinpoint key networks that functionally drive AD development and progression. We will take two complementary approaches to identify risk and resilience AD genes: (1) we will use a family-based approach to identify both risk and protective alleles using publicly available data and our own WGS/WES data from both NIALOAD and Utah families; and (2) we will use publicly available high-dimensional molecular data from AD cases and controls to construct global interaction and causal networks. We will then focus our analysis of ADSP case control sequence data on the most compelling networks, thereby reducing our search space and increasing power. To identify therapeutic targets, we will use network analysis to test known drugs that target networks identified in our sequence analysis of both family-based and case control data. We will then validate our findings by performing in vitro experiments based our in silico observations and determine the functional consequences of risk/resilience alleles identified from the AD sequence data. Together, the findings from this study will pinpoint key networks that functionally drive AD and will provide critical insight into therapeutic intervention.

Understanding the Mechanism of SPl1 Dependent Alzheimer Disease Risk

The primary goal of this project is to understand how variation within the SPI1 locus influences Alzheimer’s Disease (AD) risk. Recently, genetic and molecular evidence has implicated myeloid cells in the etiology of AD, including our finding that AD risk alleles are enriched for cis-eQTL effects in monocytes but not CD4+ T-lymphocytes. Our studies have identified SPI1 as a novel risk factor for Alzheimer’s disease, and that there are four non-coding variants that constitute the most likely functional variants, either individually or in combination. We have shown computationally and experimentally that SPI1, which codes for the transcription factor PU.1, regulates expression of many other AD risk factor genes including CD33, MS4A4A, MS4A6A, TYROBP, APOE, CLU. Indeed, genes regulated by PU.1 are highly enriched for AD risk loci suggesting that this network is a potential therapeutic target for AD prevention drugs. We are pursuing cell culture and animal models to determine the impact of variation in expression of SPI1 on global gene expression in microglia, function of microglia and AD pathology in mouse models.

Genomic Approach to Identification of Microglial Networks Involved in Alzheimer’s Disease Risk

The goal of this project is to use genetic and genomic approaches to identify functional networks enriched for Alzheimer’s disease (AD) risk and protective loci, and to use this information to determine how cellular function and physiology is impacted by these genetic factors in disease-relevant cell types and animal models. Initial analyses of both genome-wide association data and whole genome sequencing data provide substantial evidence to support the hypothesis that many AD risk genes operate within one or more inter-connected networks that modulate myeloid cell function. As part of this application we plan to extend this work to more fully characterize the affected network(s) by analyzing the largest GWAS and WGS datasets to date and integrating this data with macrophage and monocyte gene expression and epigenomic data. Further we will validate our findings through experimental approaches in iPSC-derived microglia/macrophages and an animal model.

https://pubmed.ncbi.nlm.nih.gov/35031484/

The Familial Alzheimer Sequencing (FASe) Project

Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding amyloid-beta precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2). Subsequently, the identification of these genes led to the Aβ-cascade hypothesis and recently to the development of drugs that target that pathway. In this proposal, we will identify rare risk and protective alleles. In a recent study, we identified a rare coding variant in TREM2 with large effect size for risk for AD, confirming that rare coding variants play a role in the etiology of AD. We will use sequence data from families densely affected by AD, because we hypothesize that these families are enriched for genetic risk factors. We already have access to sequence data from 695 families (2,462 individuals), that combined with the ADSP data will lead to a very large family-based dataset: more than 805 families and 4,512 participants. Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found. The identification of those variants and genes will lead to a better understanding of the biology of the disease.

Addiction: Collaborative Study on the Genetics of Alcoholism (COGA)

Collaborative Study on the Genetics of Alcoholism

The Collaborative Study on the Genetics of Alcoholism (COGA) is a tightly integrated and interdisciplinary project, whose overarching goals are to understand the contributions and interactions of genetic, neurobiological, and environmental factors on risk and resilience over the developmental course of AUD, including relapse and recovery. COGA is a family-based study of large, ethnically diverse families, some densely affected by AUD, and family members have been characterized in clinical, behavioral, neuropsychological, neurophysiological, and socio-environmental domains, yielding a rich phenotypic dataset paired with a large repository of biospecimens and genome wide SNP data (GWAS) in 12,145 family members. The breadth and depth of longitudinal assessments in COGA families allow genomic analyses to be conducted within a developmental context, allowing inferences regarding genetic susceptibility and environmental malleability, which may contribute to avenues for prevention and intervention. To understand the genetics of AUD and its interplay with environment, we propose three inter-related and inter-dependent projects (Genomics, Brain Function, Lifespan) supported by three essential cores (NIAAA-COGA Sharing Repository, Data Management, and Administrative).

The overarching specific aims of the Genomics Project for the next five years of COGA are:

  • To characterize loci, genes and biological pathways underlying alcohol use and AUD for further functional prioritization
  • To determine the impact of new and existing genetic and genomic findings on diverse COGA phenotypes to understand how polygenic risk relates to the development and persistence of AUD and its sequelae
  • To elucidate the effects of genes/loci and alcohol on genomic and cellular neuronal signatures that contribute to alcohol-related phenotypes, using human iPSC-derived cells
Investigating the MAPT H1 Haplotype Genetic Susceptibility for PSP and FTD
The genetic association between the MAPT H1 haplotype and increased risk for multiple Tauopathies, including PSP, is well-established and replicated. Our goal is to better characterize the functional and structural differences between H1 and H2, in order to better understand the
mechanisms underlying increased PSP risk. To do this, we will be using iPSC lines from homozygous H1 and H2 carriers, differentiated into three neural cell populations; forebrain glutamatergic neurons, midbrain dopaminergic neurons and astrocytes. We will conduct RNA-seq in these cells to assay the global transcriptomic changes that occur as a result of MAPT haplotype across multiple cell types. In addition, we
plan to carry out targeted MAPT Iso-seq on the same cell populations in order to thoroughly characterize full isoform expression and splicing in H1 and H2 haplotypes. In collaboration with the Geschwind lab, we will also carry out Hi-C in iPSC-derived forebrain neurons, as we expect that the large structural rearrangement conferring the H1 and H2 haplotypes will result in alterations in chromatin structure and folding, which may be contributing to changes in global and local gene expression and splicing. Not only will this be the first thorough comparison of transcriptomic differences between MAPT H1/H2, but this analysis may provide some insight into why H1 is consistently associated with disease while H2 is protective, and may direct us towards some novel pathways and phenotypes for assessment in cell and animal models of Tauopathy. Finally, numerous MAPT mutations have been identified that cause tauopathies such as FTD and PSP.
Interestingly, all of these mutations exist only on the H1 background. We anticipate that their impact may be altered in the context of an H2 background. We propose to use CRISPR/Cas9 genome editing to insert the FTD/PSP-associated S305N mutation into an iPSC line homozygous for the H2 haplotype. By comparing the H2 S305N mutant with the H1 S305N mutants we have in the lab, we can better characterize the differences between H1 and H2 haplotypes. Combined with the results from the RNA-seq, Iso-seq and Hi-C experiments,
this will allow us to uncover and better define the risk and protective mechanisms associated with each haplotype.
Identification of Novel Alzheimer’s Disease Genes Using Next Generation Sequencing

Genetic studies of AD had identified mutations in the amyloid-beta precursor protein (APP) presenilin (PSEN1) and presenilin 2 (PSEN2) genes cause Mendelian forms of AD. These mutations have been found in a small number of people, but the identification of such mutations and genes provided a better understanding of the biology of AD. More recent studies using genome-wide association studies (GWAS) approaches in late onset AD have identified more than thirty loci that influence risk for AD. For some of these loci genetic variants in specific genes have been identified, but for the majority of these loci the disease gene remains to be identified. The goal of this project is to use genetic and genomic approaches to identify functional networks enriched for AD risk and protective loci, and to use this information to determine how myeloid cellular function is impacted by these genetic factors in disease-relevant cell types. The ultimate goal is to use this information to identify drugs that target these networks and to test the drugs in appropriate cellular models. During the last three years we have revealed substantial evidence to support the hypothesis that many AD risk genes operate within an inter-connected network that modulates myeloid cell function. We plan to extend this work to more fully characterize the affected network(s) using bioinformatics and to validate our findings through experimental approaches in BV2 cells and human induced pluripotent stem cells (hiPSC)-derived microglia.

Understanding the Mechanism of MS4A-Dependent AD Risk

A major obstacle for the translation of Late onset AD (LOAD) GWAS data into an actionable (from a drug discovery perspective) understanding of disease etiology is not only the increased complexity of the genetic architecture of LOAD compared to autosomal-dominant AD, but also the fact that (with a few exceptions) the causal genes are much more difficult to identify unequivocally. Indeed, most genetic variants associated with LOAD don’t occur within genes but instead fall into non-coding regions of the genome that modulate the expression of one or more genes in specific cell types. By applying novel computational and statistical methods for integrated analyses of human genetics and genomics datasets, we have identified strong candidate genes, biochemical pathways and cellular processes. In particular, we have discovered that variants in most of the LOAD GWAS loci function to modulate the expression of genes that play important roles in cells of the myeloid lineage, such as monocytes and macrophages (including microglia), the professional phagocytes of the innate immune system. Several of these candidate genes (together with well-validated LOAD genes like APOE, TREM2 and ABCA7) cluster around the phagocytic clearance of lipid-rich cellular debris (hereafter referred to as efferocytosis), a core and evolutionarily conserved function of myeloid cells that is essential for the maintenance of tissue homeostasis, immune tolerance, and the resolution of inflammation. A recent publication indicated that members of the MS4A family are lipid sensors in the olfactory system.  This observation led us to proposed that the MS4A genes linked to AD could be lipid sensors for microglia, potentially unifying them with the efferocytosis hypothesis. The goal of this research is to identify candidate the causal gene(s) in the MS4A cluster (an AD-associated locus) and to investigate their role in AD pathogenesis for the development of therapeutic agents.

Dominantly Inherited Alzheimer Network – Genetics Core

The Dominantly Inherited Alzheimer Network (DIAN) established an international, multicenter registry of individuals (gene carriers and noncarriers; asymptomatic and symptomatic) who are at risk of carrying a known causative mutation for AD in the amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes. Individuals are evaluated upon enrollment in DIAN and longitudinally thereafter with standard instruments including the Uniform Data Set of the Alzheimer’s Disease Centers and protocols developed by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for structural, functional, amyloid imaging , biological fluids (blood; CSF), and histopathological examination of cerebral tissue in individuals who come to autopsy. We have expanded our network of centers and begun longitudinal characterization of a large series of autosomal dominant AD (ADAD) kindreds with known disease-causing mutations and will continue longitudinal follow up of these kindreds to identify the earliest detectable changes associated with development of disease and to characterize the temporal series of events that occurs up to and including the diagnosis of symptomatic AD. The goal of the Genetics Core of the DIAN initiative is to provide genetic information and useful biological and genomic materials to the research community for the study of AD. We have already collected genomic samples from 531 individuals and generated fibroblasts from 99 individuals. We anticipate collection of an additional 125 new individuals, including participants from NIH and self-funded sites. We will expand the fibroblast and induced pluripotent stem cell collection. The Core will maintain and curate a list of pathogenic mutations and confirm that new DIAN families carry an ADAD mutation. The Core will also generate GWAS and APOE genotype data on all individuals and obtain biological materials (fibroblasts, induced pluripotent stem cells, white blood cells) to perform cell-based functional studies. All data will be placed in the DIAN database. We will support all projects in DIAN and perform analyses with other Cores to identify novel factors modulating age at onset in these families.

The Familial Alzheimer Sequencing (FASe) Project

Family-based approaches led to the identification of disease-causing Alzheimer’s Disease (AD) variants in the genes encoding amyloid-beta precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2). Subsequently, the identification of these genes led to the Aβ-cascade hypothesis and recently to the development of drugs that target that pathway. In this proposal, we will identify rare risk and protective alleles. In a recent study, we identified a rare coding variant in TREM2 with large effect size for risk for AD, confirming that rare coding variants play a role in the etiology of AD. We will use sequence data from families densely affected by AD, because we hypothesize that these families are enriched for genetic risk factors. We already have access to sequence data from 695 families (2,462 individuals), that combined with the ADSP data will lead to a very large family-based dataset: more than 805 families and 4,512 participants. Our preliminary results support the flexibility of this approach and strongly suggest that protective and risk variants with large effect size will be found. The identification of those variants and genes will lead to a better understanding of the biology of the disease.

The National Institute on Aging (NIA) Late Onset of Alzheimer’s Disease (LOAD) Family-Based Study (FBS)

To date, a total of 1,454 multiplex late onset AD (LOAD) families have been recruited with 8,543 family members clinically assessed and DNA sampled. We have also recruited 1,030 controls. Genome-wide SNP arrays have been generated on 5,428 individuals, exome chip genotyping on 1,278 individuals, whole exome sequencing in 1,484 and whole genome in 928 family members and controls. The NIA-LOAD FBS provides an excellent opportunity to improve our understanding of the clinical and biological impact of genetic variation in the elderly. Phenotypic information is continually updated in these families by regular cognitive evaluations and autopsy at the time of death to confirm the diagnosis of LOAD. We have begun to recruit additional family members with a particular emphasis on the offspring generation. We have been able to bank brain tissue from family members creating one of the largest collections of brain tissues for familial LOAD. We will now expand biological sampling to include RNA and peripheral blood mononuclear cells in selected families. As additional genes and variants are identified, the members of the NIA LOAD Family Study will again play a central role as we explore: What is the impact of these risk and protective variants on disease risk? Are the genetic variants highly penetrant? What is the risk of developing LOAD in offspring? Can the presence of variants be used for stratification of patients into specific subtypes for clinical trials? Can the family data be used to identify novel biomarkers of disease risk, age at onset onset or progression? The NIA-LOAD FBS dataset is uniquely poised to address these clinical and biological questions because of its large size, rigorous ascertainment criteria, standardized clinical assessment and lack of restriction to specific mutations. This is by far the largest collection of LOAD families available in the world and virtually every major genetic study of Alzheimer’s disease has included patients and controls from the NIA-LOAD FBS dataset. 

Stem Cell Tau Consortium
With collaboration and support from the Tau Consortium and the Rainwater Foundation, a large collection of iPSC lines with
MAPT mutations and isogenic controls has been developed over the past five years. The Tau Consortium Stem Cell Group is now embarking on systematic and extensive phenotyping of these lines. iPSC-derived neural models with MAPT mutations show several key features of disease, including increased total tau, insoluble tau, phosphorylated tau and increased neural cell death. Furthermore, MAPT mutations are associated with vulnerability of iPSC-derived lines to environmental stressors, including oxidative stress and proteostasis dysfunction. The power of iPSC technology is that it enables us to delve into the factors that lead to these changes. Our overall objective is to identify the earliest changes in genes, pathways and cell populations that presage and contribute to the development of tau pathology and neurodegeneration, to identify new ways to combat tauopathies.

Team

Edoardo M Marcora, PhD
Professsor
edoardo.marcora@mssm.edu

Alan E Renton, PhD
Assistant Professor
alan.renton@mssm.edu

Bartek Jablonski
Associate Director
bartek.jablonski@mssm.edu

Ellie Zhang
Executive Assistant
ellie.zhang@mssm.edu

Charlotte Labrie-Cleary
Lab Manager
charlotte.labrie-cleary@mssm.edu

Brian Fulton-Howard, Ph.D
Senior Scientist
brian.fulton-howard@icahn.mssm.edu

Ania Podlesny-Drabiniok, PhD
Instructor
anna.podlesny-drabiniok@mssm.edu

Tulsi Patel, PhD
Instructor
tulsi.patel2@mssm.edu

Francesca Garretti, PhD
Postdoctoral Fellow
francesca.garretti@mssm.edu

Carmen Romero-Molina, PhD
Postdoctoral Fellow
carmen.romeromolina@mssm.edu

Chiara Pedicone, PhD
Postdoctoral Fellow
chiara.pedicone@mssm.edu

Hyo Lee, PhD
Postdoctoral Fellow
hyo.lee@mssm.edu

Michael Sewell, PhD
Postdoctoral Fellow
michael.sewell@mssm.edu

Danielle Picarello
Associate Computational Scientist
danielle.picarello@mssm.edu

Wen Yi See
Associate Researcher
wenyi.see@mssm.edu

Anthony Walley
Associate Researcher
anthony.walley@mssm.edu

Marcelina Ryszawiec
Associate Researcher
marcelina.ryszawiec@mssm.edu

Alexandra E. Münch
Graduate Student
alexandra.munch@icahn.mssm.edu

Grace Peppler
Graduate Student
grace.peppler@icahn.mssm.edu

Nicholas Church
Graduate Student
nicholas.church@icahn.mssm.edu

Jeanne Kim
Graduate Student
jeanne.kim@icahn.mssm.edu

Alexander Frank
Graduate Student
alexander.frank@icahn.mssm.edu

Sarah Weitzman
Graduate Student
sarah.weitzman@icahn.mssm.edu

Sun Hao
Graduate Student
hao.sun@icahn.mssm.edu

Jae-Won Jang MD, PhD
Visiting Scholar
jaewon.jang@mssm.edu

Publications

Goate Lab Gatherings

An Important Test for the Amyloid Hypothesis — November 4, 2016

Merck’s Director of Neuroscience Matthew Kennedy shares why these early results have him feeling hopeful. He is joined by Alison Goate, the director of the Ronald M. Loeb Center for Alzheimer’s Disease at Mount Sinai. Read More

Science Friday

Daily Checkup: Alzheimer's disease expert identifies risk factors — November 29, 2015

As the director of the Ronald M. Loeb Center on Alzheimer’s Disease at Mount Sinai, Dr. Alison Goate specializes in researching the disease’s basic mechanisms to improve our treatment options. November is National Alzheimer’s Disease Awareness Month. Read More

New York Daily News

Alzheimer's Association recognizes four scientists with Lifetime Achievement Awards at AAIC 2015 — July 21, 2015

The Alzheimer’s Association recognizes four leading scientists for their contributions to advancing Alzheimer’s disease and dementia research. The awards were presented during the opening session at the Alzheimer’s Association International Conference® 2015 (AAIC® 2015) in Washington, D.C. Read More

News Medical Life Siences and Medicine

Genetic markers found to predict Alzheimer's — April 5, 2013

Scientists have identified early genetic markers that can potentially predict who is at an increased risk for developing Alzheimer’s, Medical Daily reported.Currently, in order to determine if someone will develop Alzheimer’s disease, doctors use tests that analyze the amount of Tau protein buildup in the central nervous system. The more Tau in an individual’s system, the more likely he or she will progress towards dementia. Read More

Fox News Health

Dr. Goate elected into the National Academy of Medicine

“Election to the National Academy of Medicine is considered one of the highest honors in medicine,” says Dennis S. Charney, MD, the Anne and Joel Ehrenkranz Dean of the Icahn School of Medicine at Mount Sinai. “The election of Drs. Goate and Richardson is a notable achievement and well-deserved recognition of each of their leadership efforts and important contributions to their particular fields of study.” Read More.

Huang et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease

A genome-wide survival analysis of 14,406 Alzheimer’s disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. Read More.

TCW et al. An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.

Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. Read More.

Pimenova et al. A Tale of Two Genes: Microglial Apoe and Trem2.

Microglial cell function is implicated in the etiology of Alzheimer’s disease by human genetics. In this issue of Immunity, Krasemann et al. (2017) describe a gene expression signature associated with an APOE- and TREM2-dependent response of microglia to brain tissue damage that accumulates in aging and disease, defining an axis that might be amenable to therapeutic targeting. Read More.

Goate Lab Alumni

Kathryn Bowles, Ph.D.

Kathryn Bowles, Ph.D.

Group Leader

UKDRI centre at the University of Edinburgh

Kam-Meng Tchou-Wong, Ph.D.

Kam-Meng Tchou-Wong, Ph.D.

Director

Columbia University’s Mailman School of Public Health

Anna Pimenova, Ph.D.

Anna Pimenova, Ph.D.

R&D Project Manager

Immunai

Shea Andrews, Ph.D.

Shea Andrews, Ph.D.

Assistant Professor of Psychiatry and Behavioral Sciences

University of California San Francisco

Julia TCW, Ph.D.

Julia TCW, Ph.D.

Assistant Professor

Boston University

Anastasia Efthymiou, Ph.D.

Anastasia Efthymiou, Ph.D.

Scientist I

BlueRock Therapeutics

Saima I. Machlovi, Ph.D.

Saima I. Machlovi, Ph.D.

Equity Research Associate

Morgan Stanley

Manav Kapoor, Ph.D.

Manav Kapoor, Ph.D.

Senior Manager

Regeneron Genetics Center

Laura-Maria Oja

Laura-Maria Oja

Senior Associate Researcher

BrainXell

Franco Abbate, Ph.D.

Franco Abbate, Ph.D.

Director of Pharmacology

Intensity Therapeutics

Gloriia Novikova, Ph.D.

Gloriia Novikova, Ph.D.

Scientist

Genetech

 

Benjamin Jadow

Benjamin Jadow

Medical Student

Albert Einstein College of Medicine

Rozhan Khaleghi

Rozhan Khaleghi

Riana Khan

Riana Khan

Medical Student

New York Institute of Technology

Bianca T. Esposito

Bianca T. Esposito

Jo-Anne Elikann

Jo-Anne Elikann

Sarah Neuner, Ph.D.

Sarah Neuner, Ph.D.

Joseph Kakkis

Joseph Kakkis

Jessica Schulman

Jessica Schulman

Yiyuan Liu, Ph.D.

Yiyuan Liu, Ph.D.

Rose Temizer

Rose Temizer

Travyse Edwards

Travyse Edwards

Iya Prytkova

Iya Prytkova

Nadia Harerimana

Nadia Harerimana

Alisha Aristel

Alisha Aristel

Manon Herbinet

Manon Herbinet