Research
Featured
Publications – full details here
2017
Howarth, Sutherland, Choi, Martin, Lind, Khennouf, LeDue, Pakan, Ko, Ellis-Davies, Lauritzen, Sibson, Buchan, MacVicar (2017) J. Neurosci. 37, 2403-2414.
Richers, M.T., Amatrudo, J.P., Olson, J.P. and Ellis-Davies, G.C.R. (2017) Cloaked caged compounds: chemical probes for two-photon optoneurobiology. Angewandte Chemie 56, 193-97.
2016
Sajo, M., *Ellis-Davies, G.C.R. and *Morishita, H. (2016) Lynx1 limits dendritic spine turnover in the adult visual cortex. J. Neurosci. 36, 9472-8
*corresponding authors.
Agarwal, H.K., Janicek, R., Chi, S.H., Perry, J.W., Niggli, E. and Ellis-Davies, G.C.R., (2016) Calcium uncaging with visible light. J. Am. Chem. Soc. 138, 3687-93.
Kantevari, S., Passlick, S., Kwon, H.B., Richers, M., Sabatini, B.L., and Ellis-Davies, G.C.R., (2016) Development of anionically decorated caged neurotransmitters: in vitro comparison of 7-nitroindolinyl- and 2-(p-phenyl-o-nitrophenyl)-propyl-based photochemical probes. ChemBioChem 17, 953-961.
2015
Wang, H. C., Lin, C-C., Cheung, R., Zhang-Hooks, Y., Agarwal, A., Ellis-Davies, G.C.R., Rock, J., Bergles, D. E. (2015) Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell 163, 1348-1359.
Amatrudo, J.M., Olson, J.P., Agarwal, H.K. and Ellis-Davies G.C.R. (2015) Caged compounds for multichromic optical interrogation of neural systems. Eur. J. Neurosci. 41, 5-16.
2014
Yagishita, S., A. Hayashi-Takagi, A., Ellis-Davies, G.C.R., Urakubo, H., Ishii, S. and Kasai, H. (2014) A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616-1620.
Crowe, S.E. and Ellis-Davies, G.C.R. (2014) Longitudinal in vivo two-photon fluorescence imaging. J. Com. Neurol. 522, 1708-1727.
Watkins, S. Robel, S. Kimbrough, I.F., Robert, S.M., Ellis-Davies, G.C.R. and Sontheimer, H. (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nature Commun. 5, e4196.
Crowe, S.E. and Ellis-Davies, G.C.R. (2014) Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons. Brain Struct. Funct. 219, 571-580.
Amatrudo, J.M., Olson, J.P., Lur, G., Chiu, C.Q., Higley, M.J. and Ellis-Davies G.C.R. (2014) Wavelength-selective one- and two-photon uncaging of GABA. ACS Chem. Neurosci. 5, 64-70.
2013
Olson, J.P., Banghart, M.R., Sabatini, B.L. and Ellis-Davies G.C.R. (2013) Spectral evolution of a photochemical protecting group for orthogonal two-color uncaging with visible light. J. Am. Chem. Soc. 135, 135, 15948-15954.
Buskila, Y., Crowe, S.E. and Ellis-Davies, G.C.R. (2013) Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience 254, 152-159.
Hayama, T., Noguchi, J., Watanabe, S., Takahashi, N., Hayashi-Takagi, A., Ellis-Davies, G.C.R., Matsuzaki, M. and Kasai, H. (2013) GABA promotes the competitive selection of dendritic spines by controlling local Ca signaling Nature Neurosci. 16, 1409-1416.
Olson, J.P., Kwon, H-B., Takasaki, K.T., Chiu, C.Q., Higley, M.J., Sabatini, B.L. and Ellis-Davies G.C.R. (2013) Optically selective two-photon uncaging of glutamate at 900 nm. J. Am. Chem. Soc. 135, 5954-5957.
Gross, G.G., Junge, J.A., Mora, R.J. Kwon, HB, Olson, C.A., Takahashi, T.T., Emily R. Liman, E.R., Ellis-Davies, G.C.R., McGee, A., Sabatini, B.L., Roberts, R.W. and Arnold, D.A. (2013) Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78, 971-85.
Chiu, C.Q. Lur, G., Morse, T.M., Carnevale, N.T., Ellis-Davies, G.C.R. and Higley, M.J. (2013) Compartmentalization of GABAergic inhibition by dendritic spines. Science 340, 759-762.
Crowe, S.E. and Ellis-Davies, G.C.R. (2013) In vivo characterization of a bigenic fluorescent mouse model of Alzheimer’s disease with neurodegeneration. J. Com. Neurol. 521, 2181-2194.
Meet the Team – full details here
Pradeep Chauhan
Adriana Petriz Reyes
Matt Richers
Stefan Passlick
Job Openings
Postdoctoral position in synaptic physiology
The goal of our research is to understand the basic mechanisms underlying synaptic function. We have recently developed new optical methods for stimulating single GABA receptors in brain slices (Nature Methods (2010) 7, 123-127; Nature Chemical Biology (2010) 39, 255-7; and ACS Chem Neurosci. (2014) 5, 64-70), and want to extend this work to detail the distribution of functional receptors and the balance of excitation and inhibition in pyramidal cells. We are looking for a highly motivated and independent candidate with strong background and publication record in neuroscience and expertise in patch-clamp in brain slices. The lab is well-equipped for this type of science, having three two-photon microscopes of our own. Interested candidates should e-mail a cover letter describing research experience, and the webpages of 3 references to graham.ellis-davies at mssm.edu.
Postdoctoral fellowships in chemical biology
The Ellis-Davies lab is well known for work at the interface of chemistry and biology (e.g. photosensitive, or caged, neurotransmitters for the stimulation of nerve cells). Two postdoctoral positions are available in our new labs at Mount Sinai School of Medicine to do make novel chromophores for photochemical uncaging in living animals using modern synthetic organic chemistry. The successful candidates will have the opportunity to interact with biologists, and learn about pharmacology and neuroscience. Our papers appear in high profile journals (eg. Nature Chemical Biology, Nature Methods, Nature Protocols, JACS, etc.). Candidates MUST HAVE a Ph.D. in synthetic organic chemistry for consideration. Please send these important details:
- education history
- webpages of three references
- list of publications
Ideally you live in the USA or Europe, as you will have to come to New York City for an interview.