Cai Lab

Temporal Dynamics of Learning and Memory



How do memories remain stable and yet flexibly update across time and experience? How does stress and trauma change memory processing and alter stress response? How does aging and age-related disorders alter memory processing? These are some of the captivating—and complex— questions about learning and memory we’re exploring in our lab. We use a multi-level approach integrating molecular, cellular, circuit-level, and behavioral techniques to investigate the dynamic nature of memory.


Memory Stability & Flexibility

Creating stable memories is critical for survival. An animal relies on past learning to navigate its environment, avoid dangerous situations, and find needed resources. Because the environment is dynamic, stable memories must be updated with new information to enable responses to changing threats (a specific danger) and rewards (such as food and water). The brain circuits involved in memory and learning require both stability and flexibility. We are investigating how the dynamic activity of neural ensembles—and their cellular and molecular properties—support the “tug of war” between memory stability and flexibility in a mouse model. We use a broad range of techniques, tools, and behaviors to help us develop a comprehensive understanding of stability/flexibility at the molecular, cellular, and circuit levels. We study neural activity in awake and sleeping animals to explore how and when memories are stabilized and flexibly integrated.

Trauma & Stress

Traumatic experiences can have a profound effect on mental and emotional wellbeing and contribute to the development of debilitating neuropsychiatric illnesses, including post-traumatic stress disorder (PTSD). PTSD is characterized by potentially disabling mental conditions, and common among these is a heightened state of anxiety. Individuals who suffer from PTSD may experience fear in situations which are not typically threatening. The Cai Lab is investigating the circuit-level mechanisms that may underlie the heightened arousal to innocuous stimuli following the experience of trauma. We use a broad range of techniques, tools, and behaviors to identify the brain regions involved in the processing of trauma memories at the molecular, cellular, and circuit levels in a mouse model. We study the temporal dynamics of memory processing following trauma, and the role of sleep in memory reactivation and response to subsequent stress.

Memory & the Aging Brain

How and why do memories change across a lifetime? Is memory loss inevitable as we age? How are the processes of normal brain aging altered in age-related disorders? We are investigating the role of neuronal excitability in the formation, storage, and updating of memories in aging and in age-related disorders, such as Alzheimer’s disease, in mouse models. Combing in vitro and in vivo recording approaches, we look at changes in the molecular, cellular, and network level processes that may contribute to the memory deficits that occur during normal aging and in age-related disorders.

Denise J. Cai, PhD
Assistant Professor, Neuroscience

Member, Friedman Brain Institute

Chief, Affective Neuroscience

Member, Center for Neurotechnology and Behavior

Office: Hess 10-116
Office: 212-824-9301


Powerful new technologies are allowing us to probe a number of critical questions in novel ways about how memories change across time and experience. Our lab is dedicated to building and sharing new techniques and technologies and leveraging the innovative tools designed by other groups to investigate the dynamic nature of memory. We combine calcium imaging, optogenetics, chemogenetics, electrophysiology techniques, behavioral assays and output, and computational approaches to understand how memories are encoded, stored and recalled over time. While much of our work is conducted in freely behaving animals, we’re engaged with multiple collaborators on projects using both in vitro and in vivo approaches. We’re interested, as well, in cross-species experimentation. A challenge for our field will be making sense of the enormous volumes of data our new tools and technologies make it possible for us to obtain. Our lab is actively developing and sharing new analysis pipelines, designed specifically for users with limited background in computer science.

Miniscope: an open-source miniature head-mounted microscope for in vivo calcium imaging in freely behaving animals

I am a co-developer of UCLA Miniscopes, a miniature fluorescence microscope based on a design pioneered by Dr. Mark Schnitzer’s lab at Stanford. Miniscopes is a series of inexpensive, open-source head-mounted microscopes that use wide-field fluorescence imaging to record neural activity in awake, freely moving mice. With our collaborators at UCLA and here at Mount Sinai, our lab continues to evolve the Miniscopes system. We have built a wire-free version that enables us to track hundreds-to-thousands of neurons across days to weeks to months and longer in a freely behaving animal. The Miniscopes wiki site  provides a centralized location for sharing of design files, parts lists, source code, tutorials, and a way to connect with other Miniscopes users. One of the most exciting parts of the Miniscope Project is meeting neuroscientists from around the world at our Miniscope hands-on workshops where participants build their own Miniscopes, learn surgery methods, and are introduced to the analysis software. Hundreds of labs worldwide are using and building on this powerful technology.

Minian: an open-source Miniscopes analysis pipeline with interactive visualization tools

Miniscopes have gained a lot of traction for in vivo calcium imaging in freely behaving animals. However, extracting calcium signals from raw videos is a computationally complex problem and remains a bottleneck for many researchers utilizing single photon in vivo calcium imaging. There is a need for a user-friendly tool that offers informative visualization of how altering parameters affects the output of the data. Our open-source analysis pipeline, Minian, facilitates transparency and accessibility of the underlying algorithm of the pipeline. Minian contains interactive visualization tools for every analysis step, as well as detailed documentation and tips on parameter tuning. The visualization tool guides users to explore and select the appropriate parameters, which is especially helpful in analyzing different cell-types and brain regions. Minian has been validated to reliably and robustly extract calcium events across different cell types and brain regions.

ezTrack: an open-source video analysis pipeline for the investigation of animal behavior

Tracking small animal behavior by video is one of the most common tasks in neuroscience and psychology. Commercial software to accomplish this task, however, is expensive and often inflexible and free software often relies on complex algorithms. To overcome these hurdles, we developed a simple, free, open-source video analysis pipeline. ezTRACK can be used for automated tracking of the position and speed of animals as well as their freezing behavior (for fear conditioning experiments). It is accessible to researchers who have no programming background, provides numerous easy-to-follow visualizations, accepts a large number of video file formats, produces tabular data in accessible file formats, and is entirely platform independent. ezTrack is freely available on Github and was published on bioRxiv.


Pennington ZT, Diego KS, Francisco TR, LaBanca AR, Lamsifer SI, Liobimova O, Shuman T, Cai DJ. (2021) ezTrack-A Step-by-Step Guide to Behavior Tracking. Current Protocols. PMID: 34610215. PDF

Pennington ZT, Cai DJ. (2021) Propranolol Inhibits Reactivation of Fear Memory. Biological Psychiatry. PMID: 34082886. PDF

Sweis BM, Mau W, Rabinowitz S, Cai DJ. (2021) Dynamic and heterogeneous neural ensembles contribute to a memory engram. Current Opinion in Neurobiology. PMID: 33388602. PDF

Mau W, Hasselmo ME Cai DJ. (2020) The brain in motion: How ensemble fluidity drives memory-updating and flexibility. eLife. PDF

Chen L, Cummings KA, Mau W, Zaki Y, Dong Z, Rabinowitz S, Clem RL, Shuman T, Cai DJ. (2020) The role of intrinsic excitability in the evolution of memory: Significance in memory allocation, consolidation, and updating. Neurobiology of Learning and Memory. PMID: 32512183 PDF

Zaki Y, Cai DJ. (2020) Creating Space for Synaptic Formation-A New Role for Microglia in Synaptic Plasticity. Cell. PMID: 327070 PDF

Poe GR, Cai DJ. (2020) The lab on lockdown: thinking back and looking ahead. Nature Reviews Neuroscience. PDF

Shuman T, Aharoni D, Cai DJ, Lee CR, Chavlis S, Taxidis J, Flores SE, Cheng K, Javaherian M, Kaba CC, Shtrahman M, Bakurin KI, Masmanidis S, Kakh MS, Poirazi P, Silva AJ, Golshani P. (2020). Breakdown of spatial coding and neural synchronization in epilepsy. Nature. January 6, 2020. PDF

Pennington ZT, Dong Z, Bowler R, Feng Y, Vetere LM, Shuman T, Cai DJ. (2019) ezTrack: An open-source video analysis pipeline for the investigation of animal behavior. Scientific Reports.:// PDF

Yetton, B. D., Cai, D. J., Spoormaker, V. I., Silva, A. J., & Mednick, S. C. (2019). Human Memories Can Be Linked by Temporal Proximity. Frontiers in Human Neuroscience, 13, 315. PMID: 31572150 PDF

Zhou M, Greenhill S, Huang S, Silva TK, Sano Y, Wu S, Cai Y, Nagaoka Y, Sehgal M, Cai DJ, Lee YS, Fox K, Silva AJ. (2016) CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. eLife. PMID: 27996938 PDF

Cai DJ*, Aharoni D*, Shuman T*, Shobe J* (*co-first author), Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, Flores S, Kim I, Sano Y, Zhou M, Baumgaertel K, Lavi A, Kamata M, Tuszynski M, Mayford M, Golshani P, Silva AJ. (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 534(7605),115-118. PMID: 27251287 PDF

Rogerson T, Jayaprakash B, Cai DJ, Sano Y, Lee Y, Bekal P, Deisseroth K, Silva AJ. (2016) Molecular and cellular mechanisms for trapping and activating emotional memories. PLOS ONE, 1(8):e0161655. PMID: 27579481 PDF

Kastellakis G, Cai DJ, Mednick SC, Silva AJ, Poirazi P. (2015) Synaptic clustering within dendrites: an emerging theory of memory formation. Progress in Neurobiology, 126,19-35. PMID: 25576663 PDF

Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ. (2014) Synaptic tagging during memory allocation. Nature Reviews Neuroscience, 15(3), 157-169. PMID: 24496410 PDF

Sano Y, Shobe JL, Zhou M, Huang S, Shuman T, Cai DJ, Golshani P, Kamata M, Silva AJ. (2014) CREB regulates memory allocation in the insular cortex. Current Biology, 24(33): 2833-2837. PMID: 25454591 PDF

Shuman T, Cai DJ, Sage JR, Anagnostaras SG. (2012) Interactions between modafinil and cocaine during the induction and expression of conditioned place preference and locomotor sensitization: implications for addiction. Behavioural Brain Research, 235(2), 105-112. PMID: 22963989 PDF

Mednick SC, Cai DJ, Shuman T, Anagnostaras SG, Wixted JT. (2011) A opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, (doi:10.1016/j.physletb.2003.10.071) PMID: 21742389 PDF

Anagnostaras SG, Wood SC, Shuman T, Cai DJ, LeDuc AD, Zurn KR, Sage JR, Herrera GM. (2010) Automated assessment of Pavlovian conditioned freezing and shock reactivity using the VideoFreeze system. Frontiers in Behavioral Neuroscience, 4,158. PMID: 20953248 PDF

Rieth CA, Cai DJ, Mednick SC. (2010) The role of sleep and practice in implicit and explicit motor learning. Behavioural Brain Research, 214(2), 470-474. PMID: 20553972 PDF

Cai DJ, Mednick SA, Harrison EM, Kanady J, Mednick SC. (2009) REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences, 106(25), 10130-10134. PMID: 19506253 PDF

Cai DJ, Shuman T, Harrison EM, Sage JR, Anagnostaras SG. (2009) Sleep-deprivation and Pavlovian fear conditioning. Learning & Memory, 16, 595-599. PMID: 19794184 PDF

Cai DJ, Shuman T, Gorman MR, Sage JR, Anagnostaras SG. (2009) Sleep selectively enhances hippocampus-dependent memory in mice. Behavioral Neuroscience, 123(4), 713-719. PMID: 19634928 PDF

Cai DJ and Rickard TC. (2009) Reconsidering the role of sleep for motor memory consolidation. Behavioral Neuroscience, 123(6),1153-1157. PMID: 20001099 PDF

Mednick SC, Makovski T., Cai DJ, Jiang YV. (2009) Sleep and rest facilitate implicit memory in a visual search task. Vision Research, 49(21), 2557-2565. PMID: 19379769 PDF

Mednick SC, Cai DJ, Kanady J, Drummond SPA. (2008) Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory. Behavioural Brain Research, 193(1), 79-86. PMID: 18554731 PDF

Rickard TC, Cai DJ, Rieth CA, Jones J, Ard MC. (2008) Sleep does not enhance motor sequence learning. Journal of Experimental Psychology: Learning, Memory & Cognition, 34(4), 834-842. PMID: 18605872 PDF

Shuman et al. found desynchronization of hippocampal inhibition in epileptic mice. Read more.

Pennington et al. developed ezTrack: an open-source video analysis pipeline for the investigation of animal behavior Read more.

Cai et al. found that a shared neuronal ensemble links distinct contextual memories encoded close in time. Read more.

Cai et al. found that REM sleep, compared with non-REM sleep, helped to improve creativity. Read more.


(Above) Dr. Denise Cai, a 2019 One Mind Rising Star Awardee, shares details about her One Mind funded research into how memories of traumatic events can be linked across time and trigger a fearful response in a safe environment. This presentation was filmed at the Scientific Symposium of One Mind’s 25th Music Festival for Brain Health held on September 14, 2019

(Above) Next Generation Leader Denise Cai presents on “Linking memories across time” at the 2017 Allen Institute Showcase Symposium hosted by the Allen Institute for Brain Science.

(Above) In this seminar, Dr. Denise Cai will share her personal accounts in pursuing an academic path. She will discuss how she works through impostor syndrome, gender bias, post-partum depression and mommy-guilt in order to find balance in life, love and science.

(Above) Richard and Susan Friedman Scholar: Denise Cai and Mark Baxter

(Above) Dr. Cai’s team investigates the temporal dynamics of how memories are formed, integrated and separated. In addition, her team studies how aging contributes to cognitive decline. Her lab leverages a multi-level approach, including in vivo imaging, activity-dependent tagging, optogenetics, chemogenetics and behavioral assays.

(Above) In this episode of our weekly Brain Waves series, One Mind President, Brandon Staglin hosts One Mind Rising Star Awardee, Denise J. Cai, PhD, Assistant Professor in Neuroscience at Icahn School of Medicine at Mount Sinai, and Kyle Elliott MPA CHES, a life coach who has lived experience with post-traumatic stress. Dr. Cai has conducted extensive research into how memories are formed and how that process is impacted by traumatic events. Tune in to learn how Kyle and Dr. Cai’s experiences with trauma are helping them to navigate the COVID-19 crisis and establish a new normal.

(Above) “The Allen Institute has been a leader in spearheading the open science movement,” explains Next Generation Leader Denise Cai. This movement is enabling quicker breakthroughs, technological advancements, and scientific discoveries.

(Above) Denise Cai, winner of the Distinguished Scholar Award, discusses how she balances family care taking responsibilities and her career as a scientist. 

(Above) Dr. Denise Cai discusses the research focus of the Cai lab and the techniques used to answer related questions at the Zuckerman-Friedman Brain Institute symposium. 


(Above) Dr. Denise Cai discusses the importance of building a village to support one’s mental and physical health. She elaborates on how this idea specifically relates to advocacy in the medical community and isolation experienced by many during the COVID-19 pandemic.

(Above) Drs. Denise Cai and Mark Baxter discuss what is known about networks in the brain, how this has evolved over recent years, and how this can translate to potential treatments for those with memory disorders.

(Above) This panel featuring mothers in early stages of their careers — including graduate students, postdoctoral fellows, and early career faculty — addresses some of the issues facing new moms in STEM. Panelists share personal experiences, identify problems, and propose potential solutions for various gender bias related issues.

(Above) Dr. Denise Cai on studying memory, developing open tools for science and facing gender bias.

Meet the Team

Denise J. Cai, PhD

Principal Investigator

I study the neural mechanisms that govern how memories dynamically change across time and experience. As a doctoral student with Drs. Sara Mednick, Stephan Anagnostaras, and Michael Gorman at the University of California, San Diego, I characterized the role of sleep in creativity and memory processing. In my postdoctoral studies with Dr. Alcino Silva at the University of California, Los Angeles, I studied how memories are linked across time. I am also one of the primary developers of the UCLA Miniscope system, an open source suite of novel imaging technologies and techniques. My lab uses a multi-level approach in our research, incorporating in vivo calcium imaging, optogenetic and chemogenetic activity-dependent gene regulation, electrophysiology, and novel behavioral assays. Outside of the lab, I enjoy spending time with my kids, cooking, dancing, and single malt Scotches.

Lingxuan Chen, PhD

Postdoctoral Fellow
(co-mentored by Tristan Shuman)

I joined the Cai lab as a postdoctoral fellow in 2018. I received my bachelor’s degree in biomedical engineering from Zhejiang University in China, where I was working in a cognitive neuroscience lab. I then did my doctoral training with Dr. Istvan Mody at UCLA. My PhD thesis was on investigating interneuron deficit in a mouse model of Alzheimer’s disease using in vitro and in vivo electrophysiology techniques. Currently, I am interested in what happens during normal aging, specifically how hippocampal excitability changes and affects learning and memory as we age. Outside of the lab, I enjoy watching movies, playing the piano, exploring new food and places in NYC, and observing the amazing human cognitive development in my baby girl.

Zach Pennington, PhD

Postdoctoral Fellow

I joined the Cai Lab after obtaining my PhD from UCLA in 2018, where I studied PTSD in the laboratory of Dr. Michael Fanselow. In the Cai Lab, I am continuing my research on fear and memory processes relevant to PTSD, utilizing a combination of cell tagging strategies and calcium imaging. The overarching goal of this work is to better understand the biological changes that predispose individuals to develop PTSD in the wake of trauma. I am also involved in the development of open-source tools for automated behavior and calcium imaging analysis. When I’m not in lab, I love exploring New York by foot and by bike, trying new food, watching live music, and baking bread.

William Mau, PhD

Postdoctoral Fellow

I joined the lab as a postdoctoral fellow in 2019. After my undergraduate work with David Smith at Cornell University, I did my graduate training with Howard Eichenbaum and Steve Ramirez at Boston University. At BU, I investigated amygdala responses during fear relapse and long-term activity patterns of hippocampal sequences. My interests lie in understanding how the dynamic brain stores information over time, which I study using longitudinal in vivo calcium imaging and behavior. Outside of the lab, I can be found bouldering and imbibing craft beers.

Brian Sweis, MD, PhD

Research Track Psychiatry Resident, Postdoctoral Fellow
(co-mentored by Eric Nestler and Scott Russo)              

I joined the Cai Lab after completing the MD/PhD program at the University of Minnesota – Twin Cities in 2020, where I studied neuroeconomics and addiction in the laboratories of Dr. David Redish and Dr. Mark Thomas. In the Cai Lab, I am continuing my research on how the brain makes complex choices, how specific memories are accessed when deliberating among future options, how the physical limits of the brain give rise to cognitive biases, and how these computational processes go awry in psychiatric disorders. The overarching goal of my work is to translate discoveries from animal models directly into the patient populations I work with at Mount Sinai Hospital. When I’m not in lab, I love eating my way through town and playing pick up basketball games in Central Park when I can!

Phil Dong

Graduate Student

I earned my undergraduate degree at Nankai University, China, where I majored in biology, and spent a lot of time working in a structural biology lab. Toward the end of my studies, I became fascinated by the anime series Ghost in the Shell and at the same time became interested in the question of consciousness. I was convinced that memory lies at the heart of consciousness and decided to study memory as a doctoral student. I got interested, as well, in the emergent properties of systems and was fascinated by computational neuroscience. My current research interest is studying how particular memories evolve across time and how they may influence the formation of future memories. In addition, I am also working on developing open-source software for calcium imaging analysis. My interests outside of neuroscience include video games, rock music, math, and martial arts.

Joe Zaki

Graduate Student
(co-mentored by Kanaja Rajan)

I completed my undergraduate training at Northeastern University in Behavioral Neuroscience and Computer Science. During that time, I worked in the labs of Dr. Sandeep Robert Datta, Dr. Leon Reijmers, and Dr. Steve Ramirez, where I studied olfactory processing, fear extinction learning, and fear relapse respectively and gained interest in understanding the dynamic nature of memory. I am currently a graduate student in the labs of Dr. Denise Cai and Dr. Kanaka Rajan. I am interested in how the brain constructs dynamic representations of the external world to inform robust but flexible behaviors. I currently use in vivo calcium imaging to study how prior experiences influence future learning, and I conduct in vivo manipulations (e.g. chemo- and opto-genetics) to address how perturbing neural activity influences learning and its underlying neural population dynamics. Alongside these experimental approaches, I use the calcium imaging datasets from our lab to build network models of memory flexibility. These models can produce hypotheses about mechanisms of memory that are testable in vivo. Outside of the lab, I enjoy writing stories with my camera, curating playlists on my Spotify, spending half my weekends baking desserts, and spending the other half eating the desserts.

Natasha Berryman

Graduate Student

My pronouns are she/her/they, and I became a member of the Cai group in the fall of 2020. I first earned a B.S. in technical communication from Ferris State University (Big Rapids, MI), and then later trained as a master’s student in the Fisk-Vanderbilt Bridge Program under the direction of Drs. J. Shawn Goodwin (Meharry Medical College; Nashville, TN) and Lee Limbird (Vanderbilt University; Nashville, TN). During my time there, I worked to understand the molecular mechanisms underpinning dopamine dysregulation in the presence of psychostimulants. My current research utilizes systems-level neuroscience and electrophysiological techniques to explore the biological basis of sleep disruptions chronically observed in those contending with PTSD. Passionate about all things #scicomm, I couple my neuroscience training with my communication skills to help create conversations and accountability between emerging and established STEM practitioners; importantly, my efforts emphasize building and bolstering long-term equity in STEM, particularly for those who have been historically marginalized in research spaces. When not in lab, I enjoy reading, cooking, live shows and Internet cats. 

Alexa LaBanca

Lab Manager, Associate Researcher

I joined the Cai lab in 2020 after earning a B.S. in Psychology at Boston College. During my time at BC, I worked in Dr. Michael McDannald’s behavioral neuroscience lab, where I studied the effects of maladaptive fear and the neural underpinnings of how fear scales to level of threat in rodent models. Currently in the Cai lab, I am working closely with Dr. Zachary Pennington in continuing to research fear and the memory processes related to PTSD, while also managing the lab. Outside of neuroscience, my hobbies include playing the piano and finding the next opportunity to attend a concert. 

Denisse Morales-Rodriguez

Associate Researcher

I joined the Cai Lab in 2021 after earning a B.S. in Neuroscience from the University of Chicago. During my undergraduate studies, I worked in Dr. Mark Sheffield’s group where I studied how hippocampal place cell dynamics were altered during contextual fear conditioning and extinction. In the Cai Lab, I am working closely with Dr. William Mau and Joe Zaki to study dynamic representations in the brain. Outside of the lab, I can be found playing my violin, going on a run, or visiting art museums.

Alora Zrenda

Research Associate

I joined the Cai Lab in 2020 after accompanying Dr. Cai to her presentation at both IBRIO and the prestigious Seoul University in 2019.  I was fascinated and excited for the kind of research and work Cai Lab is doing and wanted to be a part of this dynamic team. I earned my undergraduate degree in Political Science from UC Riverside, CA, completed some post graduate work at Suffolk Law University, MA and worked as a Trust Administrator at Merrill Lynch Trust Company in CA, before doing the hardest work of all, full time stay at home mom for my 3 daughters. Now I’m starting my third career in the world of neuroscience.

A true CA girl at heart, I often like to make quick escapes to LA to get In n Out burgers, boba drinks, and flip flop weather fixes. Outside the lab, I can be found immersed in watching K drama, listening to K pop music and enjoying some Korean cuisine.

Taylor Francisco

Research Associate

I am a Columbia University undergraduate studying Neuroscience and Behavior. My passion for neuroscience stems from a desire to understand the biological underpinnings of trauma in order to increase the efficacy of mental illness treatment.  My long term goal is to uplift minority communities to achieve a higher quality of life by becoming a physician-scientist. When I am not in the lab you can find me walking throughout the city trying all the vegan restaurants or listening to social justice-oriented podcasts


Daniel Aharoni, Ph.D., Assistant Professor, UCLA

Mark Baxter, Ph.D., Professor, Icahn School of Medicine at Mount Sinai

Ian Maze, Ph.D., Associate Professor, Icahn School of Medicine at Mount Sinai

Paul Kenny, Ph.D., Professor, Icahn School of Medicine at Mount Sinai

Sima Rabinowitz, Writer and Editor

Kanaka Rajan, Ph.D., Assistant Professor, Icahn School of Medicine at Mount Sinai

Tristan Shuman, Ph.D., Assistant Professor, Icahn School of Medicine at Mount Sinai

Paul Slesinger, Ph.D., Professor, Icahn School of Medicine at Mount Sinai

Scott Russo, Ph.D., Professor, Icahn School of Medicine at Mount Sinai

Roger Clem, Ph.D., Associate Professor, Icahn School of Medicine at Mount Sinai


Zhuoli Huang, Researcher, TAL’s Brain-lab

Lucia Page-Harley, Masters Student, University of San Francisco

My (Mimi) La-Vu, PhD Student, UCLA


Corin Humphrey
We will miss you always

Christopher Lee, PhD Student, UCSD

Brandon Wei, Medical Student, Texas Tech University

Maojuan Zhuang, Associate Researcher, Icahn School of Medicine at Mount Sinai

Funding, Awards, and Honors

• Mount Sinai Distinguished Scholar Award, 2020-2020

• NIMH Research Grant (R01), 2019-2024

• NIH Director’s New Innovator Award, 2019-2024

• One Mind Otsuka Rising Star Award, 2016-2022

• McKnight Memory and Cognitive Disorder Award, 2019-2023

• NARSAD Young Investigator Award, 2019-2021

• Irma T. Hirschl/Monique Weill-Caulier Research Award, 2021

• Brain Research Foundation Award, 2018

• Klingenstein-Simons Fellowship Award, 2018-2021

• Friedman Brain Scholar Award, 2018

• Outstanding Teaching Award, ISMMS, 2018

• Botanical Center Pilot Award, 2018

• Allen Institute Next Generation Leader, 2017

• Optogenetics GRC, Vice Chair, 2020 and Chair, 2022


We do not currently have any positions available at this time.